SF298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOQSES

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this coilection of information s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathenng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Reprint

4. TITLE AND SUBTITLE ' 5. FUNDING NUMBERS

Title shown on Reprint

Alo MR S6-a4|

6. AUTHOR(S)

Author(s) listed on Reprint

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

”W& W W /j M REPORT NUMBER

mM ,CA §37¢3

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U. S. Army Research Office
P. 0. Box 12211

Research Triangle Park, NC 27709-2211
' ARO 36989.82-MA

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT ‘ 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON REPRINT

996062

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE COODE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
" OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

-~ . Prescribed by ANSI Std. Z39-18
DTIC QUALIIY (NEPECTED) 298-102

J S —

3

. Proceedings of the 1 995 Monterey Workshop on Increasing the Practical Impact of F ormal Methods for Computer-
Aided Software Development: Specification-Based Software Architectures, Monterey, CA, 12-14 Sept 1995

Monterey Workshop ‘95: Specification-based Software Architectures —
Increasing the Practical Impact of Formal Methods for
Computer-Aided Software Development

Lugi
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

1. Introduction

Current software development cap:ambilities need improvement to effectively produce software

that meets users’ needs. Formal software models that can be mechanically processed can

provide a sound basis for building and integrating tools that produce software faster, cheaper,

and more reliably. Formal methods can also increase automation and decrease inconsistency

in software development.

The goal of the Monterey Workshop series is to help increase the practical impact of
formal methods for software development so that these potential benefits can be realized in

actual practice. Each year we focus in depth at one aspect of software development. In 1992,
the focus was real-time and concurrent systems; in 1993, software slicing and merging; and
in 1994, software evolution. This year’s focus is specification-based software architectures.

This workshop helps clarify what good formal methods are and what are their limits.

According to Webster’s Dictionary, formal means definite, orderly, and methodical; it does

not necessarily entail logic or proofs or correctness. Everything that computers do is formal

ifi the sense that syntactic structures are manipulated according to definite rules. Formal

methods are syntactic in essence and semantic in purpose. Given the motivations of the
workshop, we believe this is the most appropriate sense for the word “formal” in the phrase
“formal methods.” We expect the ultimate main benefits of formal methods to be decision

support for and partial automation of the software development process.

2. Scope

Specification-based software architectures address families of software systems with a com-
mon problem domain and common solution structures. These domains can be general, and

can have many different specializations that are amenable to the same solution structure.

The problem domains can have a wide variety, including scientific computing, business infor-

mation systems, computer-aided design environments, real-time control systems, distributed

information systems, and military applications.

We take a specification to be a formal description of the behavior visible at the external
interface of a component. A specification typically describes what must happen (liveness

constraints), what may not happen (safety constraints), and timing constraints.

A software architecture defines the common structure of a family of systems by specifying
the components that comprise systems in the family, the relations and interactions between
the components, and the rationale for the design decisions embodied in the structure. The
components are subsystems that are used as building blocks in the architecture. They
can have a wide variety of scales, and can themselves be defined using lower level software

-1-

architectures, resulting in hierarchical descriptions of system structure. The components are
encapsulated black boxes. The component slots in an architecture are abstract in the sense -
that they can be filled by a variety of concrete components that satisfy the requirements of
the slots. These requirements are given via the component specifications associated with the
architecture. ‘

3. The Significance of Software Architecture

Software architectures are relevant to many aspects of computer-aided software development,
including automatic program generation, reuse, evolution, and systems integration.

Connecting components. Any meaningful interaction between subsystems requires a
shared conceptual model that can capture the meaning of the interaction. This model
serves to enable design using black-box components, because it provides designers a charac-
terization of the behavior of the component that is independent of its realization. The most
effective models are abstract in this sense. The models can also only partially constrain the
behavior of a component, with the result that a slot in the architecture can be filled with
a variety of components that agree on certain aspects of their behavior and differ in others.
This enables a single design to provide a controlled spectrum of possible system behaviors.

The conceptual models of component behavior also enable bridging between different
concrete realizations of interfaces with the same abstract meaning. Support for software
architectures should include automatic means for generating bridging transformations that
enable connections between components with common conceptual models but different phys-
ical realizations of the same abstract interaction, including differences in data representations
and control conventions.

Relation to languages. A software architecture is based on common models of compu-
tations. The most useful of these are abstract ones, which can serve to unify a variety of
concrete realizations of the same conceptual model.

Practical applications require descriptions of particular architectures. For effective au-
tomation support, these descriptions should be expressed in a formal language that embodies
the computational models underlying the architecture. Different choices of models lead to
different kinds of languages. Overly detailed models of computation can quickly lead to very
complicated languages and architecture descriptions. A suitably abstract model is essential
for simplicity and practical usefulness.

Relation to program generation. Generating programs from specifications is very difficult,
and is probably not tractable in an unconstrained context. A given problem domain and
a given set of general solution structures specified by a software architecture can make the
problem tractable in practice. In such a situation, the program generator is not required
to create new solutions to problems, but only to tailor the general solutions given by the
architecture to particular instances of the problem domain addressed by the architecture.
Thus the architecture defines the range of problems that can be handled by a given solution
generator.

Relation to composition and reuse. One of the difficulties in creating large systems by
connecting (composing) smaller systems is compatibility between the conceptual models
underlying the subsystems. A software architecture defines a common conceptual model.
Components designed or generated to fit the same architecture will have compatible con-

-2

ceptual models, and thus consistent connections can be created, possibly via some bridging
code to transform between concrete representation conventions. This approach can prevent
severe integration problems that could in the worst case be solvable only by redesigning one
or more of the components.

Reuse is subject to a similar difficulty, because independently developed components are
unlikely to have completely consistent conceptual models. However, components designed to
fit a given architecture can be reused without modification in the scope of that architecture.
This is significant because economically effective reuse depends on reuse of components
without modification.

Relation to decomposition and analysis. Complex systems are understood by people via
hierarchical decomposition. An architecture contains the information about the interface
conventions and the requirements associated with the component slots in the architecture
that are needed to make this work on a large scale.

Relation to evolution and merging. The constraints and conventions associated with a
composite design are essential to determine what can be changed without damaging a design.
This is precisely the information recorded in the specification part of a specification-based
software architecture. Much of the difficulties with evolution of legacy software stem from
the loss of this information.

Software change merging is the process of automatically combining several changes to
the same version of a software system. An essential requirement for this process is to detect
all potential conflicts between changes, and to guarantee semantic integrity of the results of
no conflicts are reported. The behavioral requirement information contained in a software
architecture can enhance this process and enable more discriminating results. Recent results
show that change merging cannot be done via a divide and conquer approach, which implies
that the computational cost of change merging increases faster than linearly with the size of
the system. Change merging at the architectural level has been shown to be feasible, and
this approach is most promising for large systems because it appears to be computationally
tractable.

Relation to networks Networks are the physical means for realizing connections between
remote nodes in distributed architectures. Knowledge of the constraints and conventions
associated with a connection in a software architecture can in principle be exploited by the
network protocols to provide better service.

Relation to hybrid systems Some of the components slots in a software architecture can
in principle be filled by components realized in hardware rather than by software. The
information in a software architecture can be used to support hardware/software codesign,
and can eventually lead to automatic realizations in hardware for some classes of components.

Relation to heterogeneous architectures Different components in a software architecture
can in principle be implemented using different programming languages, operating systems,
or hardware platforms. A carefully structured description of the software architecture that
provides annotations to refine abstract architectures with physical realization attributes can
effectively support generation of connections between nodes with different (and hence incom-
patible) physical realizations, by automatically constructing the required transformations
and inserting them in the connections.

4. Workshop Summary

The workshop consists of formal presentations on the subject, interleaved with discussions
to bring out implicit assumptions, clarify relationships between different points of view, and
make assessments. The conclusions of each session are summarized by the reporters for
the session, and the results are integrated into the article “Summary of the ‘95 Monterey
Workshop” on pages 107-112 of this proceedings.

